Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38293031

RESUMO

Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infra-slow (<0.1Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting-state (N=928, 473 females), we quantified heritability of multivariate (multi-state) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ~60-500ms. Temporal features were heritable, particularly, Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for heritability of spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects strongly shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.

2.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38293067

RESUMO

Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (> 1Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting-state (N=926, 473 females). We focused on dynamic connectome features pertinent to individual differences, specifically those with established heritability: Fractional Occupancy (i.e., the overall duration spent in each recurrent connectome state) in beta and gamma bands, and Transition Probability (i.e., the frequency of state switches) in theta, alpha, beta, and gamma bands. Canonical correlation analysis found a significant relationship between the heritable phenotypes of sub-second connectome dynamics and cognition. Specifically, principal components of Transition Probabilities in alpha (followed by theta and gamma bands) and a cognitive factor representing visuospatial processing (followed by verbal and auditory working memory) most notably contributed to the relationship. We conclude that the specific order in which rapid connectome states are sequenced shapes individuals' cognitive abilities and traits. Such sub-second connectome dynamics may inform about behavioral function and dysfunction and serve as endophenotypes for cognitive abilities.

3.
Genes (Basel) ; 14(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37628618

RESUMO

Aicardi Syndrome (AIC) is a rare neurodevelopmental disorder recognized by the classical triad of agenesis of the corpus callosum, chorioretinal lacunae and infantile epileptic spasms syndrome. The diagnostic criteria of AIC were revised in 2005 to include additional phenotypes that are frequently observed in this patient group. AIC has been traditionally considered as X-linked and male lethal because it almost exclusively affects females. Despite numerous genetic and genomic investigations on AIC, a unifying X-linked cause has not been identified. Here, we performed exome and genome sequencing of 10 females with AIC or suspected AIC based on current criteria. We identified a unique de novo variant, each in different genes: KMT2B, SLF1, SMARCB1, SZT2 and WNT8B, in five of these females. Notably, genomic analyses of coding and non-coding single nucleotide variants, short tandem repeats and structural variation highlighted a distinct lack of X-linked candidate genes. We assessed the likely pathogenicity of our candidate autosomal variants using the TOPflash assay for WNT8B and morpholino knockdown in zebrafish (Danio rerio) embryos for other candidates. We show expression of Wnt8b and Slf1 are restricted to clinically relevant cortical tissues during mouse development. Our findings suggest that AIC is genetically heterogeneous with implicated genes converging on molecular pathways central to cortical development.


Assuntos
Síndrome de Aicardi , Masculino , Feminino , Animais , Camundongos , Síndrome de Aicardi/genética , Peixe-Zebra/genética , Mapeamento Cromossômico , Genes Ligados ao Cromossomo X/genética , Bioensaio
4.
Am J Hum Genet ; 110(8): 1356-1376, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421948

RESUMO

By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals.


Assuntos
Encefalopatias , Deficiência Intelectual , Humanos , Encefalopatias/genética , Canais Iônicos/genética , Encéfalo , Deficiência Intelectual/genética , Fenótipo
5.
Ann Clin Transl Neurol ; 10(8): 1417-1432, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340737

RESUMO

OBJECTIVE: Infection-triggered encephalopathy syndromes (ITES) are potentially devastating neuroinflammatory conditions. Although some ITES syndromes have recognisable MRI neuroimaging phenotypes, there are otherwise few biomarkers of disease. Early detection to enable immune modulatory treatments could improve outcomes. METHODS: We measured CSF neopterin, quinolinic acid, kynurenine and kynurenine/tryptophan ratio using a liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) system. The CSF of 18 children with ITES were compared with acute encephalitis (n = 20), and three control groups, namely epilepsy (n = 20), status epilepticus (n = 18) and neurogenetic controls (n = 20). RESULTS: The main ITES phenotypes in 18 patients were acute encephalopathy with biphasic seizures and late restricted diffusion (AESD, n = 4), febrile infection-related epilepsy syndrome (FIRES n = 4) and other ITES phenotypes. Influenza A was the most common infectious trigger (n = 5), and 50% of patients had a preceding notable neurodevelopmental or family history. CSF neopterin, quinolinic acid and kynurenine were elevated in ITES group compared to the three control groups (all p < 0.0002). The ROC (area under curve) for CSF neopterin (99.3%, CI 98.1-100) was significantly better than CSF pleocytosis (87.3% CI 76.4-98.2) (p = 0.028). Elevated CSF neopterin could discriminate ITES from other causes of seizures, status epilepticus and febrile status epilepticus (all p < 0.0002). The elevated CSF metabolites normalised during longitudinal testing in two patients with FIRES. INTERPRETATION: CSF neopterin and quinolinic acid are neuroinflammatory and excitotoxic metabolites. This CSF metabolomic inflammatory panel can discriminate ITES from other causes of new onset seizures or status epilepticus, and rapid results (4 h) may facilitate early immune modulatory therapy.


Assuntos
Encefalopatias , Encefalite , Estado Epiléptico , Humanos , Neopterina , Ácido Quinolínico/metabolismo , Cinurenina , Síndrome , Doenças Neuroinflamatórias , Cromatografia Líquida , Espectrometria de Massas em Tandem , Encefalopatias/etiologia , Encefalopatias/diagnóstico , Convulsões , Biomarcadores
6.
Psychol Med ; 53(6): 2671-2681, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310301

RESUMO

BACKGROUND: Alcohol, cannabis, and nicotine use are highly comorbid and alarmingly prevalent in young adults. The hippocampus may be particularly sensitive to substance exposure. This remains largely untested in humans and familial risk may confound exposure effects. We extend prior work on alcohol and hippocampal volume in women by testing common and unique substance use effects and the potential moderating role of sex on hippocampal volume during emerging adulthood. A quasi-experimental cotwin control (CTC) design was used to separate familial risk from exposure consequences. METHODS: In a population-based sample of 435 24-year-old same-sex twins (58% women), dimensional measures (e.g. frequency, amount) of alcohol, cannabis, and nicotine use across emerging adulthood were assessed. Hippocampal volume was assessed using MRI. RESULTS: Greater substance use was significantly associated with lower hippocampal volume for women but not men. The same pattern was observed for alcohol, cannabis, and nicotine. CTC analyses provided evidence that hippocampal effects likely reflected familial risk and the consequence of substance use in general and alcohol and nicotine in particular; cannabis effects were in the expected direction but not significant. Within-pair mediation analyses suggested that the effect of alcohol use on the hippocampus may reflect, in part, comorbid nicotine use. CONCLUSIONS: The observed hippocampal volume deviations in women likely reflected substance-related premorbid familial risk and the consequences of smoking and, to a lesser degree, drinking. Findings contribute to a growing body of work suggesting heightened risk among women toward experiencing deleterious effects of substance exposure on the still-developing young adult hippocampus.


Assuntos
Cannabis , Alucinógenos , Adulto Jovem , Feminino , Humanos , Adulto , Masculino , Cannabis/efeitos adversos , Nicotina/efeitos adversos , Predisposição Genética para Doença , Etanol , Agonistas de Receptores de Canabinoides , Hipocampo/diagnóstico por imagem
7.
Pediatr Neurosurg ; 58(1): 18-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36693334

RESUMO

INTRODUCTION: Peri-insular hemispherotomy (PIH) is a hemispheric separation technique under the broader hemispherotomy group, a surgical treatment for patients with intractable epilepsy. Hemispherotomy techniques such as the PIH, vertical parasagittal hemispherotomy (VPH), and modified-lateral hemispherotomy are commonly assessed together, despite significant differences in anatomical approach and patient selection. We aim to describe patient selection, outcomes, and complications of PIH in its own right. METHODS: A systematic review of the literature, in accordance with the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA) guidelines, was conducted, with searches of the PubMed and Embase databases. A local series including patients receiving PIH and followed up at the Queensland Children's Hospital between 2014 and 2020 was included. RESULTS: Systematic review of the literature identified 393 patients from 13 eligible studies. Engel class 1 outcomes occurred in 82.4% of patients, while 8.6% developed post-operative hydrocephalus. Hydrocephalus was most common in the youngest patient cohorts. Developmental pathology was present in 114 (40.8%) patients, who had fewer Engel 1 outcomes compared to those with acquired pathology (69.1% vs. 83.7%, p = 0.0167). The local series included 13 patients, 11/13 (84.6%) had Engel class 1 seizure outcomes. Post-operative hydrocephalus occurred in 2 patients (15.4%), and 10/13 (76.9%) patients had worsened neurological deficit. CONCLUSION: PIH delivers Engel 1 outcomes for over 4 in 5 patients selected for this procedure, greater than described in combined hemispherectomy analyses. It is an effective technique in patients with developmental and acquired pathologies, despite general preference of VPH in this patient group. Finally, very young patients may have significant seizure and cognitive benefits from PIH; however, hydrocephalus is most common in this group warranting careful risk-benefit assessment. This review delivers a dedicated PIH outcomes analysis to inform clinical and patient decision-making.


Assuntos
Epilepsia Resistente a Medicamentos , Hemisferectomia , Hidrocefalia , Criança , Humanos , Resultado do Tratamento , Convulsões/complicações , Epilepsia Resistente a Medicamentos/cirurgia , Hemisferectomia/efeitos adversos , Hemisferectomia/métodos , Hidrocefalia/cirurgia , Hidrocefalia/complicações
8.
Psychophysiology ; 60(3): e14200, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36281995

RESUMO

Time-frequency representations of electroencephalographic signals lend themselves to a granular analysis of cognitive and psychological processes. Characterizing developmental trajectories of time-frequency measures can thus inform us about the development of the processes involved as well as correlated traits and behaviors. We decomposed electroencephalographic (EEG) activity in a large sample of individuals (N = 1692; 917 females), assessed at approximately 3-year intervals from the age of 11 to their mid-20s. Participants completed an oddball task that elicits a robust P3 response. Principal component analysis served to identify the primary dimensions of time-frequency energy. Component loadings were virtually identical across assessment waves. A common and stable set of time-frequency dynamics thus characterized EEG activity throughout this age range. Trajectories of changes in component scores suggest that aspects of brain development reflected in these components comprise two distinct phases, with marked decreases in component amplitude throughout much of adolescence followed by smaller yet significant rates of decreases into early adulthood. Although the structure of time-frequency activity was stable throughout adolescence and early adulthood, we observed subtle change in component loadings as well. Our findings suggest that striking developmental change in event-related potentials emerges through a gradual change in the magnitude and timing of a stable set of dimensions of time-frequency activity, illustrating the usefulness of time-frequency representations of EEG signals and longitudinal designs for understanding brain development. In addition, we provide proof of concept that trajectories of time-frequency activity can serve as potential endophenotypes for childhood externalizing psychopathology and alcohol use in adolescence and early adulthood.


Assuntos
Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Adolescente , Adulto , Criança , Potenciais Evocados/fisiologia , Consumo de Bebidas Alcoólicas , Endofenótipos , Estudos Longitudinais
9.
J Med Genet ; 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790351

RESUMO

PURPOSE: To summarise the clinical, molecular and biochemical phenotype of mannosyl-oligosaccharide glucosidase-related congenital disorders of glycosylation (MOGS-CDG), which presents with variable clinical manifestations, and to analyse which clinical biochemical assay consistently supports diagnosis in individuals with bi-allelic variants in MOGS. METHODS: Phenotypic characterisation was performed through an international and multicentre collaboration. Genetic testing was done by exome sequencing and targeted arrays. Biochemical assays on serum and urine were performed to delineate the biochemical signature of MOGS-CDG. RESULTS: Clinical phenotyping revealed heterogeneity in MOGS-CDG, including neurological, immunological and skeletal phenotypes. Bi-allelic variants in MOGS were identified in 12 individuals from 11 families. The severity in each organ system was variable, without definite genotype correlation. Urine oligosaccharide analysis was consistently abnormal for all affected probands, whereas other biochemical analyses such as serum transferrin analysis was not consistently abnormal. CONCLUSION: The clinical phenotype of MOGS-CDG includes multisystemic involvement with variable severity. Molecular analysis, combined with biochemical testing, is important for diagnosis. In MOGS-CDG, urine oligosaccharide analysis via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry can be used as a reliable biochemical test for screening and confirmation of disease.

11.
Nature ; 603(7902): 654-660, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35296861

RESUMO

Magnetic resonance imaging (MRI) has transformed our understanding of the human brain through well-replicated mapping of abilities to specific structures (for example, lesion studies) and functions1-3 (for example, task functional MRI (fMRI)). Mental health research and care have yet to realize similar advances from MRI. A primary challenge has been replicating associations between inter-individual differences in brain structure or function and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)). Such BWAS have typically relied on sample sizes appropriate for classical brain mapping4 (the median neuroimaging study sample size is about 25), but potentially too small for capturing reproducible brain-behavioural phenotype associations5,6. Here we used three of the largest neuroimaging datasets currently available-with a total sample size of around 50,000 individuals-to quantify BWAS effect sizes and reproducibility as a function of sample size. BWAS associations were smaller than previously thought, resulting in statistically underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As sample sizes grew into the thousands, replication rates began to improve and effect size inflation decreased. More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus mental health questionnaires) and multivariate methods (versus univariate). Smaller than expected brain-phenotype associations and variability across population subsamples can explain widespread BWAS replication failures. In contrast to non-BWAS approaches with larger effects (for example, lesions, interventions and within-person), BWAS reproducibility requires samples with thousands of individuals.


Assuntos
Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos , Cognição , Conjuntos de Dados como Assunto , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Fenótipo , Reprodutibilidade dos Testes
12.
BMJ Open ; 12(6): e059301, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691237

RESUMO

INTRODUCTION: Approximately 20%-40% of comatose children with risk factors in intensive care have electrographic-only seizures; these go unrecognised due to the absence of continuous electroencephalography (EEG) monitoring (cEEG). Utility of cEEG with high-quality assessment is currently limited due to high-resource requirements. New software analysis tools are available to facilitate bedside cEEG assessment using quantitative EEG (QEEG) trends. The primary aim of this study is to describe accuracy of interpretation of QEEG trends by paediatric intensive care unit (PICU) nurses compared with cEEG assessment by neurologist (standard clinical care) in children at risk of seizures and status epilepticus utilising diagnostic test statistics. The secondary aims are to determine time to seizure detection for QEEG users compared with standard clinical care and describe impact of confounders on accuracy of seizure detection. METHODS AND ANALYSIS: This will be a single-centre, prospective observational cohort study evaluating a paediatric QEEG programme utilising the full 19 electrode set. The setting will be a 36-bed quaternary PICU with medical, cardiac and general surgical cases. cEEG studies in PICU patients identified as 'at risk of seizures' will be analysed. Trained bedside clinical nurses will interpret the QEEG. Seizure events will be marked as seizures if >3 QEEG criteria occur. Post-hoc dedicated neurologists, who remain blinded to the QEEG analysis, will interpret the cEEG. Determination of standard test characteristics will assess the primary hypothesis. To calculate 95% (CIs) around the sensitivity and specificity estimates with a CI width of 10%, the sample size needed for sensitivity is 80 patients assuming each EEG will have approximately 9 to 18 1-hour epochs. ETHICS AND DISSEMINATION: The study has received approval by the Children's Health Queensland Human Research Ethics Committee (HREC/19/QCHQ/58145). Results will be made available to the funders, critical care survivors and their caregivers, the relevant societies, and other researchers. TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry (ANZCTR) 12621001471875.


Assuntos
Encéfalo , Convulsões , Humanos , Criança , Estudos Prospectivos , Austrália , Convulsões/etiologia , Eletroencefalografia/métodos , Monitorização Fisiológica/métodos , Cuidados Críticos/métodos , Unidades de Terapia Intensiva , Estudos Observacionais como Assunto
13.
Acta Neurochir (Wien) ; 164(1): 219-227, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755209

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) therapy was first approved in the mid-1990s in the USA, Europe and Australia, with demonstrable efficacy in paediatric populations. Benefit in seizure frequency reduction can be observed up to 2 years post-intervention; however, few studies assess outcomes beyond this period. Furthermore, paediatric cohort sizes are small, limiting generalisability of outcome assessments. We evaluate VNS insertion outcomes and complications or side-effects in a large paediatric cohort, over a 20-year period from Queensland's first VNS insertion. METHODS: A retrospective review was conducted of all paediatric VNS insertions at the Queensland Children's Hospital (QCH) and the Mater Children's Hospital/Mater Children's Private Hospital (MCH/MCPH) Brisbane. A minimum of 1-year follow-up from 1999 to 2020 was required for inclusion. Patients were assessed on demographics, epilepsy details, seizure outcomes and complications or side-effects. RESULTS: In this extended follow-up cohort (76 patients, 7.2 ± 5.3 years), 51.3% of patients had ≥ 50% seizure frequency reduction, while 73.7% experienced an Engel III outcome (worthwhile benefit) or better. Eleven patients (14.9%) were seizure-free at follow-up, and 81.6% retained long-term therapy. Stimulation-related side-effects are common (17.1%) but rarely result in stimulation cessation (3.9%). Cessation occurred in 14 patients (18.4%) and most commonly related to minimal benefit (13.2%). Demographics, aetiology, seizure nature and surgical factors did not influence outcomes. CONCLUSION: Over extended treatment periods, a large proportion of patients will benefit significantly from VNS therapy. Approximately 4 of 5 patients will retain VNS therapy, and in cases of cessation, this is most commonly related to minimal benefit. Underlying demographics, aetiology or seizure nature do not influence outcomes. This 20-year Queensland assessment of VNS therapy outcomes informs long-term expectation of VNS therapy.


Assuntos
Epilepsia , Estimulação do Nervo Vago , Austrália , Criança , Epilepsia/terapia , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Nervo Vago , Estimulação do Nervo Vago/efeitos adversos
14.
Biometrics ; 78(1): 313-323, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33058149

RESUMO

Electroencephalography (EEG) is a noninvasive neuroimaging modality that captures electrical brain activity many times per second. We seek to estimate power spectra from EEG data that ware gathered for 557 adolescent twin pairs through the Minnesota Twin Family Study (MTFS). Typically, spectral analysis methods treat time series from each subject separately, and independent spectral densities are fit to each time series. Since the EEG data were collected on twins, it is reasonable to assume that the time series have similar underlying characteristics, so borrowing information across subjects can significantly improve estimation. We propose a Nested Bernstein Dirichlet prior model to estimate the power spectrum of the EEG signal for each subject by smoothing periodograms within and across subjects while requiring minimal user input to tuning parameters. Furthermore, we leverage the MTFS twin study design to estimate the heritability of EEG power spectra with the hopes of establishing new endophenotypes. Through simulation studies designed to mimic the MTFS, we show our method out-performs a set of other popular methods.


Assuntos
Eletroencefalografia , Gêmeos , Adolescente , Teorema de Bayes , Humanos , Gêmeos/genética
15.
Brain Behav ; 11(8): e02188, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34291596

RESUMO

BACKGROUND AND PURPOSE: The ENIGMA-EEG working group was established to enable large-scale international collaborations among cohorts that investigate the genetics of brain function measured with electroencephalography (EEG). In this perspective, we will discuss why analyzing the genetics of functional brain activity may be crucial for understanding how neurological and psychiatric liability genes affect the brain. METHODS: We summarize how we have performed our currently largest genome-wide association study of oscillatory brain activity in EEG recordings by meta-analyzing the results across five participating cohorts, resulting in the first genome-wide significant hits for oscillatory brain function located in/near genes that were previously associated with psychiatric disorders. We describe how we have tackled methodological issues surrounding genetic meta-analysis of EEG features. We discuss the importance of harmonizing EEG signal processing, cleaning, and feature extraction. Finally, we explain our selection of EEG features currently being investigated, including the temporal dynamics of oscillations and the connectivity network based on synchronization of oscillations. RESULTS: We present data that show how to perform systematic quality control and evaluate how choices in reference electrode and montage affect individual differences in EEG parameters. CONCLUSION: The long list of potential challenges to our large-scale meta-analytic approach requires extensive effort and organization between participating cohorts; however, our perspective shows that these challenges are surmountable. Our perspective argues that elucidating the genetic of EEG oscillatory activity is a worthwhile effort in order to elucidate the pathway from gene to disease liability.


Assuntos
Eletroencefalografia , Estudo de Associação Genômica Ampla , Encéfalo , Mapeamento Encefálico , Humanos , Processamento de Sinais Assistido por Computador
16.
Clin Psychol Sci ; 9(2): 197-209, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34012724

RESUMO

We examined associations between common psychiatric disorders and fecundity in a population-based cohort of 1252 twins prospectively assessed from adolescence into adulthood. Major depressive, anxiety, and alcohol use disorders were associated with lower likelihood of having children and having fewer children. Survival analyses yielded similar results accounting for timing/recurrence. Although both early- and adult-onset psychiatric disorders were associated with decreased fecundity, early-onset major depressive, anxiety (among boys), and alcohol use disorders (among girls) were associated with greater likelihood of having a child during adolescence. Among twin pairs discordant for psychiatric disorders, twins affected by anxiety and alcohol use, but not major depressive, disorders were less likely to have children than unaffected co-twins. However, unaffected twins with an affected co-twin were no more likely to have children than twins from unaffected twin pairs, inconsistent with the balancing selection hypothesis that increased fecundity in unaffected relatives accounts for persistence of psychiatric disorders.

17.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782115

RESUMO

Observational studies have linked cannabis use to an array of negative outcomes, including psychiatric symptoms, cognitive impairment, and educational and occupational underachievement. These associations are particularly strong when cannabis use occurs in adolescence. Nevertheless, causality remains unclear. The purpose of the present study was thus to examine associations between prospectively assessed adolescent cannabis use and young-adult outcomes (psychiatric, cognitive, and socioeconomic) in three longitudinal studies of twins (n = 3,762). Twins reporting greater cumulative cannabis use in adolescence reported higher levels of psychopathology as well as poorer socioeconomic outcomes in young adulthood. However, cannabis use remained associated only with socioeconomic outcomes (i.e., educational attainment, occupational status, and income) in monozygotic-cotwin control analyses, which account fully for shared genetic and environmental confounding. Follow-up analyses examining associations between twin differences in adolescent cannabis use and longitudinal change in academic functioning during the middle- and high-school years provided a possible mechanism for these associations, indicating that greater cannabis use during this period was associated with decreases in grade point average and academic motivation as well as increases in academic problem behavior and school disciplinary problems. Our findings thus suggest that cannabis use in adolescence has potentially causal, deleterious effects on adolescent academic functioning and young-adult socioeconomic outcomes despite little evidence suggesting a strong, causal influence on adult mental health or cognitive ability.


Assuntos
Escolaridade , Emprego , Uso da Maconha/epidemiologia , Transtornos Mentais/epidemiologia , Adolescente , Adulto , Cannabis , Criança , Cognição , Humanos , Estudos Longitudinais , Minnesota/epidemiologia , Adulto Jovem
18.
Brain Commun ; 3(1): fcaa235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738444

RESUMO

Brain somatic mutations are an increasingly recognized cause of epilepsy, brain malformations and autism spectrum disorders and may be a hidden cause of other neurodevelopmental and neurodegenerative disorders. At present, brain mosaicism can be detected only in the rare situations of autopsy or brain biopsy. Liquid biopsy using cell-free DNA derived from cerebrospinal fluid has detected somatic mutations in malignant brain tumours. Here, we asked if cerebrospinal fluid liquid biopsy can be used to detect somatic mosaicism in non-malignant brain diseases. First, we reliably quantified cerebrospinal fluid cell-free DNA in 28 patients with focal epilepsy and 28 controls using droplet digital PCR. Then, in three patients we identified somatic mutations in cerebrospinal fluid: in one patient with subcortical band heterotopia the LIS1 p. Lys64* variant at 9.4% frequency; in a second patient with focal cortical dysplasia the TSC1 p. Phe581His*6 variant at 7.8% frequency; and in a third patient with ganglioglioma the BRAF p. Val600Glu variant at 3.2% frequency. To determine if cerebrospinal fluid cell-free DNA was brain-derived, whole-genome bisulphite sequencing was performed and brain-specific DNA methylation patterns were found to be significantly enriched (P = 0.03). Our proof of principle study shows that cerebrospinal fluid liquid biopsy is valuable in investigating mosaic neurological disorders where brain tissue is unavailable.

19.
Psychol Med ; : 1-11, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33731234

RESUMO

BACKGROUND: To better characterize brain-based mechanisms of polygenic liability for psychopathology and psychological traits, we extended our previous report (Liu et al. Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci. Psychological Medicine, 2017), focused solely on schizophrenia, to test the association between multivariate psychophysiological candidate endophenotypes (including novel measures of θ/δ oscillatory activity) and a range of polygenic scores (PGSs), namely alcohol/cannabis/nicotine use, an updated schizophrenia PGS (containing 52 more genome-wide significant loci than the PGS used in our previous report) and educational attainment. METHOD: A large community-based twin/family sample (N = 4893) was genome-wide genotyped and imputed. PGSs were constructed for alcohol use, regular smoking initiation, lifetime cannabis use, schizophrenia, and educational attainment. Eleven endophenotypes were assessed: visual oddball task event-related electroencephalogram (EEG) measures (target-related parietal P3 amplitude, frontal θ, and parietal δ energy/inter-trial phase clustering), band-limited resting-state EEG power, antisaccade error rate. Principal component analysis exploited covariation among endophenotypes to extract a smaller number of meaningful dimensions/components for statistical analysis. RESULTS: Endophenotypes were heritable. PGSs showed expected intercorrelations (e.g. schizophrenia PGS correlated positively with alcohol/nicotine/cannabis PGSs). Schizophrenia PGS was negatively associated with an event-related P3/δ component [ß = -0.032, nonparametric bootstrap 95% confidence interval (CI) -0.059 to -0.003]. A prefrontal control component (event-related θ/antisaccade errors) was negatively associated with alcohol (ß = -0.034, 95% CI -0.063 to -0.006) and regular smoking PGSs (ß = -0.032, 95% CI -0.061 to -0.005) and positively associated with educational attainment PGS (ß = 0.031, 95% CI 0.003-0.058). CONCLUSIONS: Evidence suggests that multivariate endophenotypes of decision-making (P3/δ) and cognitive/attentional control (θ/antisaccade error) relate to alcohol/nicotine, schizophrenia, and educational attainment PGSs and represent promising targets for future research.

20.
Biol Psychiatry ; 89(10): 1012-1022, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726938

RESUMO

BACKGROUND: Impairments in inhibitory control and its underlying brain networks (control/salience areas) are associated with substance misuse. Research often assumes a causal substance exposure effect on brain structure. This assumption remains largely untested, and other factors (e.g., familial risk) may confound exposure effects. We leveraged a genetically informative sample of twins aged 24 years and a quasi-experimental co-twin control design to separate alcohol or cannabis exposure effects during emerging adulthood from familial risk on control/salience network cortical thickness. METHODS: In a population-based sample of 436 twins aged 24 years, dimensional measures of alcohol and cannabis use (e.g., frequency, density, quantity, intoxications) across emerging adulthood were assessed. Cortical thickness of control/salience network areas were assessed using magnetic resonance imaging and defined by a fine-grained cortical atlas. RESULTS: Greater alcohol, but not cannabis, misuse was associated with reduced thickness of prefrontal (e.g., dorso/ventrolateral, right frontal operculum) and frontal medial cortices, as well as temporal lobe, intraparietal sulcus, insula, parietal operculum, precuneus, and parietal medial areas. Effects were predominately (pre)frontal and right lateralized. Co-twin control analyses suggested that the effects likely reflect both the familial predisposition to misuse alcohol and, specifically for lateral prefrontal, frontal/parietal medial, and right frontal operculum, an alcohol exposure effect. CONCLUSIONS: This study provides novel evidence that alcohol-related reductions in cortical thickness of control/salience brain networks likely represent the effects of alcohol exposure and premorbid characteristics of the genetic predisposition to misuse alcohol. The dual effects of these two alcohol-related causal influences have important and complementary implications regarding public health and prevention efforts to curb youth drinking.


Assuntos
Cannabis , Alucinógenos , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Cognição , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA